y2 = 0,8Dv(max) = 0,8 × 0,037 = 0,0296;
y3 = (y1 + y2): 2 = (0,026 + 0,0296): 2 = 0,0278.
По полученным данным строим графики изменения расхода топлива от скорости автомобиля Qs = f(va).
Вывод. Анализ рисунка 8.1 показал, что минимальный расход топлива достигается при наименьшем коэффициенте суммарного дорожного сопротивления при средних оборотах коленчатого вала двигателя.
В данном проекте были рассчитаны и проанализированы тягово-скоростные и топливно-экономические свойства автобуса ГАЗ-3307. Был произведен расчет внешней скоростной характеристики двигателя, которая подтвердила, что максимальная мощность 110 кВт достигается при частоте вращения 335,1 рад/с, а максимальный момент 284,5 кН/м достигается при частоте вращения 261,7 рад/с.
В проекте также был выполнен расчет и построение тяговой диаграммы и динамической характеристики, которые по условиям сцепления колес с поверхностью дороги не ограничены. При заданном значении коэффициента сопротивления качения и уклоне дороги наблюдается ограничение максимальной скорости движения до 79,2 км/ч.
Расчет ускорения автомобиля на передачах показал, что максимальное значение достигается на первой передачи. Автомобиль разгоняется до скорости 64,4 км/ч за 67 с и при этом проходит путь 886 м.
Расчет остановочного пути доказал, что при увеличении скорости и снижении коэффициента сцепления колес с поверхностью дороги путь пройденный за время торможения увеличивается.
Расчет путевого расхода топлива показал, что он зависит от суммарного коэффициента сопротивления дороги и скорости движения автомобиля.