Судовой гидропривод рулевой машины
Страница 1

Транспорт » Судовой гидропривод рулевой машины

На судах гидроприводы наиболее широко применяются в рулевых устройствах. В последние годы гидроприводы рулевых устройств стали применяться не только на больших судах, где необходимо обеспечить момент на баллере, равный десяткам и сотням тонна-сила-метров, но и на малых судах.

Все увеличивающееся использование гидроприводов на судах обусловлено их преимуществами:

· гидропривод имеет меньшие массы и габаритные размеры, чем электропривод;

· использование в гидроприводах в качестве рабочей жидкости минеральных масел создает хорошие условия смазки, что обеспечивает надежность и долговечность механизма;

· применение минерального масла позволяет иметь также малые сопротивления трения в подвижных деталях, что обеспечивает бесшумную и плавную работу без вибраций;

· гидропривод может обеспечить широкое бесступенчатое передаточное число и легкое реверсирование без обязательного изменения направления вращения механизмов, обеспечивающих реверсирование (это исключает необходимость преодоления больших инерционных усилий — они или отсутствуют или будут значительно меньше, чем, например, у электропривода);

· гидропривод способен осуществлять более частые изменения направления перекладки, чем электропривод;

· гидропривод способен работать в затопленном состоянии, что повышает живучесть судна;

· гидропривод может быть составлен из различных стандартных и унифицированных деталей и узлов, что уменьшает его стоимость;

· использование в гидроприводах насосов с большим значением к. п. д.

(0,9-:-0,95) обеспечивает высокую экономичность их эксплуатации.

От механического гидравлический привод выгодно отличается тем, что при его компоновке и монтаже нет необходимости обеспечивать строгое взаимное расположение его отдельных узлов и деталей. Насосы электрогидравлических рулевых машин приводят их в действие с помощью давления, создаваемого в цилиндрах гидравлического рулевого привода машины в целях перекладки руля. В электрогидравлических рулевых машинах находят применение насосы регулируемой, а также и постоянной подачи. Насосы регулируемой подачи (НРП) могут быть выполнены как радиально-поршневыми, так и аксиально-поршневыми.

Эти насосы должны:

· поддерживать неизменный напор, развиваемый насосом при регулируемой подаче, колеблющейся от нуля до максимального ее значения;

· не давать пульсирующей струи жидкости;

· быстро изменять направления подачи;

· быть экономичными.

Большее распространение имеют радиально-поршневые насосы, однако в перспективе аксиально-поршневые насосы найдут более широкое применение на судах. К середине 60-х годов разработан типизированный ряд рулевых машин типа Р, в которых в двух группах (из трех) применяются аксиально-поршневые насосы регулируемой подачи типа 11Д. Насосы постоянной подачи могут быть выполнены червячными, шестеренчатыми и роторно-шиберными. В отдельных случаях на судах можно встретить ра-диально- и аксиально-поршневые насосы, используемые как насосы постоянной подачи (отрегулированные на постоянную подачу), что экономически нецелесообразно, так как стоимость этих насосов в десятки раз больше стоимости последних. Преимущественное использование аксиально-поршневых насосов на судах новой постройки объясняется их компактностью и меньшей массой (при равной мощности с радиально-поршневыми насосами), способностью работать при больших давлениях с высоким к. п. д., а. также тем, что они имеют малые радиальные размеры, допускающие большие частоты вращения, и меньшую стоимость.

Применение в рулевых машинах насосов постоянной подачи целесообразно до ограниченных пределов мощностей, так как при частичных нагрузках (когда регулирование осуществляется дросселированием жидкости) общий к. п. д. гидравлических передач будет низким.

Страницы: 1 2 3 4 5

Описание улично-дорожной сети
УДС описывается длиной участка, соединяющего смежные транспортные районы. Длина участков определяется по карте города с помощью линейки или курвиметра. Полученное значение преобразуется в реальную длину участков с помощью масштаба. Для каждого участка определяется время проезда по нему, исходя из т ...

Определение тягового усилия по мощности двигателя
ТсцТN TN-тяговое усилие при заданной скорости: TN=, кН; где: = КПД машины = 0,83 Nдв =200л.с.=148кВт мощность двигателя U- скорость перемещения машины TN=, кН; 2. Определение силы тяги по сцеплению: Тсц=Gсц, кН; где: Gсц-сцепной вес бульдозера jсц-коэффициент сцепления jсц=0,9 Gб.м= mg=160009,8=156 ...

Способы регулирования частоты вращения якоря ТЭД постоянного тока
При существующей жесткой механической связи ТЭД с колесными парами тепловоза регулировать частоту вращения якоря — это означает управлять скоростью движения локомотива. Для обеспечения полного использования мощности дизеля во всем скоростном диапазоне работы тепловоза с электрической передачей необ ...